

www.GO-Science.org

THE COMPETITIVE and INNOVATION CAPACITY of the US

- Innovation is the key driver of competitiveness, wage and job growth, and long-term economic growth
- Poor preparation in math and science is limiting the number of STEM graduates
- Education is a key element for promoting economic growth and increasing the innovative capacity of the US

The Competitiveness and Innovative Capacity of the United States

Prepared by the U. S. DEPARTMENT OF COMMERCE In consultation with the NATIONAL ECONOMIC COUNCIL

JANUARY 2012

Job Growth

OVER THE PAST 10 YEARS, GROWTH IN STEM JOBS
WAS 3 TIMES AS FAST AS GROWTH IN NON-STEM JOBS

STEM EMPLOYMENT IS EXPECTED TO GROW AT EVEN FASTER RATES

Science & Engineering Indicators

- WAGES STEM job holders earn 11% higher wages than other 4-year degreed jobs
- □ JOB GROWTH In the last 10 years, STEM jobs grew 3 times faster than non-STEM jobs
- LOWER UNEMPLOYMENT In 2010, the US unemployment rate for STEM workers was 5.3%, compared to 10% for all all other occupations

BUILDING A SCIENCE, TECHNOLOGY, ENGINEERING, and MATH EDUCATION AGENDA

Governors

An Update of State Actions

Why we lag behind...

Reasons the US lags behind its competitors in producing..."STEM graduates:

- □ Failure to motivate student interest in math and science
- Failure of the post-secondary system to meet STEM job demands

BUILDING A SCIENCE, TECHNOLOGY, ENGINEERING, and MATH EDUCATION AGENDA

Governors

An Update of State Actions

Others are taking action now...

Use informal learning to expand math and science beyond the classroom -

Many institutions, such as **museums and** science centers provide valuable out-of classroom experiences that demonstrate how math and science connect to everyday life and careers and expand skills.

These programs are proving to have a **positive effect on STEM interest** and **achievement**.

BUILDING A SCIENCE, TECHNOLOGY, ENGINEERING, and MATH EDUCATION AGENDA

An Update of State Actions

The Role of Informal Science (ISE)

- ISE which largely takes place at museums, science centers, and other institutions—can be an effective tool in a broader STEM agenda to help cities and states achieve their goals.
- (1) They raise student interest, confidence, and classroom achievement and (2)
 Generate student interest in pursuing STEM studies and careers.
- Evidence shows that teacher professional development at informal science institutions can improve teacher effectiveness in the classroom

Science & Engineering Indicators

"No amount of savings and investment, no policy of macroeconomic fine-tuning, no set of tax and spending can generate sustained economic growth unless it is accompanied by the <u>countless large and small discoveries that are required to create</u> <u>more value from a fixed set of natural resources</u>."

Paul Romer, Economist, 1993

STEM Innovation is The Key to Prosperity

- Business innovation is based on advancements in science technology, engineering, and mathematics (STEM).
 - New Products & Services
 - New Processes
- Innovation has three key economic benefits*
 - Innovation provides a first-mover advantage in new products and services, expanding exports and creating expansionary employment effects in the short term
 - Innovation's expansionary effects lead to a virtuous cycle of expanding employment
 - Innovation leads to increased wages and lower prices, both of which expand domestic economic activity and create jobs.

Science Centers Are Central They create a community of innovation and a culture that supports the new economy

What is a New Economy?

"New Economies are ones that are knowledgebased, globalized, entrepreneurial, IT-driven, and innovation-based."*

Science Centers are critical to enabling the New Economy and its traits in a community.

Where do we rank in the New Economy?

	Score 92.6	State	Rank	Rank	Damle	Change from			2010		1999	2002	2007	_	from
1 9	92.6				Rank	2002*	2007*	Rank	Score	State	Rank	Rank	Rank	2002*	2007*
	2210	Massachusetts	1	1	1	0	0	26	54.5	Kansas	27	30	34	4	8
2 7	77.5	Washington	4	4	4	2	2	27	54.2	Idaho	23	20	24	-7	-3
3 7	76.9	Maryland	11	5	3	2	0	28	54.0	Maine	28	29	32	1	4
4 7	76.9	New Jersey	8	6	2	2	-2	29	53.1	Wisconsin	32	37	30	8	1
5 7	76.6	Connecticut	5	7	6	2	1	30	52.5	Nevada	21	31	27	1	-3
6 7	75.0	Delaware	9	9	7	3	1	31	52.1	Alaska	13	39	25	8	-6
7 7	74.3	California	2	2	5	-5	-2	32	51.7	New Mexico	19	25	33	-7	1
8 7	73.7	Virginia	12	8	8	0	0	33	50.8	Missouri	35	28	35	-5	2
9 7	72.8	Colorado	3	3	9	-6	0	34	50.5	Nebraska	36	36	28	2	-6
10 7	71.3	New York	16	11	10	1	0	35	49.7	Indiana	37	32	31	-3	-4
11 7	70.6	New Hampshire	7	12	13	1	2	36	49.7	North Dakota	45	47	37	11	1
12 6	69.1	Utah	6	16	12	4	0	37	49.7	Montana	46	41	42	4	5
13 6	67.5	Minnesota	14	14	11	1	-2	38	49.5	lowa	42	40	38	2	0
14 6	67.0	Oregon	15	13	17	-1	3	39	49.3	South Carolina	38	35	39	-4	0
15 6	65.1	Illinois	22	19	16	4	1	40	48.7	Hawaii	26	38	41	-2	1
16 6	63.6	Rhode Island	29	23	15	7	-1	41	48.5	Tennessee	31	34	36	-7	-5
17 6	63.4	Michigan	34	22	19	5	2	42	47.2	Oklahoma	40	33	40	-9	-2
18 6	63.0	Texas	17	10	14	-8	-4	43	46.0	Louisiana	47	44	44	1	1
19 6	62.6	Georgia	25	18	18	-1	-1	44	46.0	Kentucky	39	42	45	-2	1
20 6	61.0	Arizona	10	15	22	-5	2	45	45.1	South Dakota	43	46	48	1	3
21 6	60.6	Florida	20	17	23	-4	2	46	45.0	Wyoming	41	43	43	-3	-3
22 6	60.2	Pennsylvania	24	21	21	-1	-1	47	43.5	Alabama	44	45	46	-2	-1
23 5	59.5	Vermont	18	26	20	3	-3	48	40.0	Arkansas	49	49	47	1	-1
24 5	57.1	North Carolina	30	24	26	0	2	49	38.1	West Virginia	48	48	50	-1	1
25 5	55.2	Ohio	33	27	29	2	4	50	35.3	Mississippi	50	50	49	0	-1

Source: The Kauffman Foundation of Entrepreneurship

Strengths & Weaknesses: Human Capital

	NC	NC Percent of U.S. Value						
Human Capital Resources	Rank	50	75	100	125	150		
Individuals in S&E Occupations as Share of Workforce (2006)	29							
Computer Specialists as Share of Workforce (2006)	20							
Employed S&E Doctorate Holders as Share of Workforce (2006)	17							
Engineers as Share of Workforce (2006)	39							
High School Graduates or Higher Among Individuals 25-44 Years Old (2005)	35			100%				
AA Degree Holders or Higher Among 25-44 Year Olds (2005)	23							
BA Degree Holders Potentially in the Workforce (2005)	23							
BA Degree Holders or Higher Among 25-44 Year Olds (2005)	26							
BA Degrees Conferred per 1,000 18-24 Year Olds (2005)	29							
BA in Natural Sci. and Eng. Conferred per 1,000 18-24 Year Olds (2005)	25							
S&E Degrees as Share of Higher Education Degrees Conferred (2005)	16							

Source: Advancing Innovation in North Carolina

Associate's Degree Holders

Bachelor's Degree Holders

Master's Degree Holders

Doctoral Degree Holders

Per-Capita Income

The Innovation Ecosystem

Informal Science Education

GO-Science is a first-class learning experience for Eastern North Carolina that provides inspirational, motivational, and educational programs and activities for children, adults, and schools in order to help participants appreciate the role of science in our lives; believing that the knowledge of science, technology, engineering, mathematics, and medicine (STEM2) is a core understanding and capacity of an educated community.

Regional Reach

GO-Sciences currently reaches over 28 thousand participants annually with over 19 core educational programs and we have over 800 volunteers with 275 of the volunteer base in Greenville, NC.

Some of Our Programs... SCIENCE SCIENCE SCIENCE NanoDays

Summer Science Camp

And they

M

m

Attin Tan Fun Facto

The Crews Aboard the Space Shuttle Ende

Our Living Planet

Hydrosphere

200

7

Hyde

What Is Addiction?

Four interactive stations use models, graphics and video to teach students about the effects of drug use on the human body.

Sending a Signal That Science and Technology Innovation is Important to Greenville

www.GO-Science.org

Roger Conner, Executive Director

1-800-919-0824 x2 RogerConner@go-science.org